Talaan ng mga Nilalaman:
- Paano Gumamit ng Listahan ng Mga Kasanayan
- Nangungunang Limang Data Mga Kasanayan sa Scientist
- Mga Kasanayan sa Scientist ng Data
Video: 3000+ Common English Words with Pronunciation 2024
Ang data siyentipiko ay isang malawak na termino na maaaring sumangguni sa isang bilang ng mga uri ng mga karera. Sa pangkalahatan, pinag-aaralan ng siyentipikong datos ang data upang malaman ang tungkol sa mga prosesong pang-agham. Ang ilang mga pamagat ng trabaho sa agham ng data ay kinabibilangan ng analyst ng data, data engineer, computer at siyentipikong pananaliksik ng impormasyon, operasyon ng pananaliksik analyst, at analyst ng computer system.
Ang mga siyentipiko ng data ay nagtatrabaho sa iba't ibang mga industriya, mula sa tech hanggang sa gamot sa mga ahensya ng gobyerno. Ang mga kwalipikasyon para sa isang trabaho sa agham ng data ay nag-iiba, dahil ang pamagat ay napakalawak. Gayunpaman, may ilang mga kasanayan sa mga employer na hinahanap sa halos bawat siyentipikong datos. Ang mga siyentipiko ng data ay nangangailangan ng mga kasanayan sa statistical, analytical at pag-uulat.
Narito ang isang listahan ng mga kasanayan sa siyentipikong datos para sa mga resume, cover letter, application ng trabaho, at mga panayam. Kasama ang isang detalyadong listahan ng limang pinakamahalagang data ng mga kasanayan sa siyentipiko, pati na rin ang mas mahabang listahan ng mas maraming mga kaugnay na kasanayan.
Paano Gumamit ng Listahan ng Mga Kasanayan
Maaari mong gamitin ang mga listahan ng mga kasanayan sa buong iyong proseso ng paghahanap ng trabaho. Una, maaari mong gamitin ang mga salitang ito sa iyong resume. Sa paglalarawan ng iyong kasaysayan ng trabaho, maaari mong gamitin ang ilan sa mga pangunahing salitang ito.
Pangalawa, maaari mong gamitin ang mga ito sa iyong cover letter. Sa katawan ng iyong liham, maaari mong banggitin ang isa o dalawa sa mga kasanayang ito, at magbigay ng isang tukoy na halimbawa ng isang oras na ipinakita mo ang mga kasanayang iyon sa trabaho.
Sa wakas, maaari mong gamitin ang mga salitang ito sa isang pakikipanayam. Tiyakin na mayroon kang hindi bababa sa isang halimbawa ng isang panahon na iyong ipinakita ang bawat isa sa mga nangungunang limang kasanayan na nakalista dito.
Siyempre, ang bawat trabaho ay nangangailangan ng iba't ibang mga kasanayan at mga karanasan, kaya siguraduhin na basahin mo ang paglalarawan ng trabaho nang maingat at tumuon sa mga kasanayan na nakalista sa pamamagitan ng employer.
Nangungunang Limang Data Mga Kasanayan sa Scientist
AnalyticalMarahil ang pinakamahalagang kasanayan para sa siyentipikong datos ay ang pag-aralan ang impormasyon. Ang mga siyentipiko ng datos ay kailangang tumingin, at may pakiramdam ng, malaking mga swath ng data. Dapat nilang makita ang mga pattern at trend sa data, at ipaliwanag ang mga pattern na iyon. Ang lahat ng ito ay tumatagal ng malakas na kasanayan sa analytical. PagkamalikhainAng pagiging mahusay na siyentipikong data ay nangangahulugan din ng pagiging malikhain. Una, kailangan mong gamitin ang pagkamalikhain upang makita ang mga trend sa data. Pangalawa, kailangan mong gumawa ng mga koneksyon sa pagitan ng data na maaaring tila walang kaugnayan. Ito ay tumatagal ng maraming malikhaing pag-iisip. Sa wakas, kailangan mong ipaliwanag ang data na ito sa mga paraan na malinaw sa mga ehekutibo sa iyong kumpanya. Ito ay madalas na nangangailangan ng malikhain na mga analogy at paliwanag. KomunikasyonAng mga siyentipiko ng data ay hindi lamang dapat pag-aralan ang data, ngunit kailangan din nilang ipaliwanag ang data na iyon sa iba. Dapat silang makapag-usap ng data sa mga tao, ipaliwanag ang kahalagahan ng mga pattern sa data, at magmungkahi ng mga solusyon. Kabilang dito ang nagpapaliwanag ng kumplikadong mga isyu sa teknikal sa isang paraan na madaling maunawaan. Kadalasan, ang data sa pakikipag-usap ay nangangailangan ng visual, oral, at nakasulat na mga kasanayan sa komunikasyon. MatematikaHabang malambot ang mga kasanayan tulad ng pagtatasa, pagkamalikhain, at komunikasyon ay mahalaga, mahirap kasanayan ay kritikal din sa trabaho. Ang isang data na siyentipiko ay nangangailangan ng mga kasanayan sa matematika, lalo na sa multivariable calculus at linear algebra. ProgrammingAng mga siyentipiko ng data ay nangangailangan ng mga pangunahing kasanayan sa computer, ngunit ang mga kasanayan sa programming ay partikular na mahalaga. Ang pagiging ma-code ay kritikal sa halos anumang data ng siyentipikong posisyon. Ang kaalaman sa mga programming language tulad ng Java, R, Python, o SQL ay mahalaga. A-C D-J L-P R-W Mga Kasanayan sa Scientist ng Data
Listahan ng Mga Kasanayan at Mga Halimbawa sa Mga Kasanayan sa Komunikasyon ng Nonverbal
Listahan ng mga kasanayan sa pakikipag-usap sa mga hindi panayam para sa mga interbyu at networking, may mga halimbawa at gagawin at hindi dapat gawin, kasama ang higit pang mga kasanayan na nakalista sa pamamagitan ng uri ng kasanayan at trabaho.
Listahan ng Mga Kasanayan at Mga Halimbawa ng Personal na Kasanayan
Listahan ng mga personal na kasanayan at mga katangian na gagamitin sa mga resume, cover letter, application ng trabaho at mga interbyu, na may mga listahan ng keyword at mga kasanayan na nakalista sa trabaho.
Mga Wika upang Maging isang Agham ng Agham ng Data
Ang agham ng datos ay isang booming field. Ang pag-aaral ng mga wikang ito ay makakatulong sa iyo na maging isang siyentipiko ng master data.